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ABSTRACT e —(§£3e0 ?)

Under certain simplifications, the equations de-
scribing the long-term behavior of a satellite disturbed by
a third body reduce to a third order (nonlinear) system
which can be integrated completely. Elliptic integrais
are required for the time dependence, but the phase-
trajectories can be represented entirely by elementary
functions. A complete description of the behavior of solu-

tions to these equations is given in this Report. w

At

I.  INTRODUCTION

To determine the exact effects of third-body perturbations on a satellite orbit, taking into account
both short-period and long-period terms, it would be necessary to solve the restricted three-body problem.
This usually requires numerical integration of the exact equations of motion on a high-speed computer. How-
ever, such computations become very costly when continuously applied over a period of two or three years,

such as may be necessary in the case of a lunar satellite.

Numerical computations of this type have revealed that the amplitudes of the short-term variations
in the elements of the osculating ellipse are in most cases quite small when compared with the values of the
elements themselves. It therefore seems reasonable to investigate the equations which govern the long-term
behavior of satellite orbits perturbed by third bodies. Such equations may be derived by applying the method
of averages (Ref. 1), the averaging being carried out over both the period of the satellite about the central

(or primary) body, and over the period of the perturbing body about the central body. The solution of these
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averaged equations (the validity of which, incidentally, is not restricted to small orbital inclination or

eccentricity) is the subject of this Report.

Although the discussion presented here neglects entirely the effects of the oblateness (if any) of

the central body, these results should be useful as a first approximation in studies of lunar satellite

stability.
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. EQUATIONS OF MOTION

Lorell and Anderson (Ref. 2) approximated the three-body equations of motion by expanding the
‘‘disturbing function’ in powers of r/r3, the ratio of the distances r of the satellite, and rg of the third body,
from the central body, and truncating this series after the first term. Then the resulting equations were
averaged wrt (with respect to) mean anomaly over the period of the satellite about the central body, which
produced a set of six coupled ode (ordinary differential equations). These averaged equations have been
incorporated into the ‘‘Lunar Lifetime Program”*, which has been shown to give excellent numerical agree-

ment with numerical integrations of the exact equations of motion.

Lorrel and Anderson made a further approximation by carrying out the averaging process over the
period of the third body about the central body, as well as over the period of the satellite. The resulting set
of six equations is given below (where the bars over the vanables signify that they nave been averaged uver

the two (constant) periods mentioned above):

da
- =0 (1a)
dt
X 3 (7

< - — §_+z2-sin2_i—[(1-;2)c052w+2(3+2e2)sin2w] (1b)
dt 4 n 3
iQ n T - _ _ _
__=-i _?__E.S_L_‘_ [(1-¢d cos?w+(1+4ed sin?w) (1)
dt 4 7 (1—-62)/2
de 15 "3 _ % — -
a2 T e1-e?)  sin?isin 2w (1d)
dt 8 =
B ng 22 _ -

< Et_:-_li—-——_T—l/—-sin2isin2w (Le)
dt 16 7 (1-e2”
dw 3 "% .Y 5 _ (e2—sin21i)
o2 2=y 1y = sinfo —m0m—— (1
dt 2 n 2 (1-¢€?

\

*Coded for the JPL 1BM 7090 computer.
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Since the series expansion of the ‘‘disturbing function” in powers of r/r3 was truncated after the
first term, it is reasonable to apply Egs. (la) through (1f) only to satellites whose orbital elements are such

that r/r3 < < 1 at all points of the orbit.

From Eq. (1a), it is seen that a = constant. Since by definition, 72 = /a3, the mean angular rate
(n) of the satellite is constant within the meaning of the averaged variables being considered. Also, ngj is
constant. Therefore, the right hand side (rhs) of Eqgs. (1d), (1e), and (1f) involve only the three averaged
variables e, i, and @. It should now be possible to determine e, i, and w as functions of time without having

to solve for X or Q. The remaining two equations may be solved later, if so desired.

For studies of the orbital lifetimes of artificial satellites, the quantity of greatest interest is the

averaged radius of closest approach, given by

r—min = z(]‘ -_e—)

Since the actual instantaneous values (q, e, i, @, ©, and X) of the osculating ellipse are assumed to deviate

end of the satellite orbit is

"min = "central body

i.e., the averaged value of the pericenter radius is equal to the surface radius of the central body, so that

impact occurs (in the sense of the present usage). This in turn defines a critical eccentricity given by

— Tcentral body

=1=-—" "7 <1 (2)

e
cr —_—
a

The lifetime of the orbit is therefore the time interval required for e to reach the value €. (The satellite

N =a(l +—e_cr) < 2a).

cannot escape from the central body, since a = constant, and r_

Since the satellite would impact on the central body ife> ?Cr, it is required only that the solutions

be valid for0 < ¢ < ;“ < 1.
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Thus,the determination of the long-term behavior of the orbit of an artificial satellite about a central
body, perturbed by a third body, reduces to the solution of Egs. (1d), (le), and (1f), a set of three coupled,
first-order, nonlinear differential equations. To solve such a system, three integrals of motion are required.

These are given in Egs. (13), (20), and (26).
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[ll.  RANGES OF THE VARIABLES

In order for the variables e and i to be physically meaningful, they must lie in the range

0<e< ;C < 1,0° < i < 180°. It may be shown that if;0 £ 0, then e > O for all finite values of &.
The proof is as follows:

From Eq. (1d),

8 n de
= Y
15 3 e(l-e?) : sin?i sin 2w

_ e
8 dx

n

15 nZ - 2 " .2 -

3 Ve x(l -x% sin“i sin 2w
where x is a dammy variable, and ¢ = 0 when €= ;0. Since the main interest is in e > 0, then de/dt <0,
which implies sin 2 w <0, or sin 2w = - |sin 25[ < 0. Hence,

8 n °0 dx

n

2 _ — _
15 n3 J3 x(l—xz)zsinzi ]sin2w|

(3)

It may be assumed that ;0 > e, so that all terms on the ths of Eq. (3) are > 0. Since 1/sin? i |sin 2 wl|> 1,

then

t > —
- 1
2)/2 15 ng €0

2
15 nj 2(l -«

Assuming that ;0 # 0, then

8 n - — 1+y/1=-¢f
“1089+105(1+\/1—e2)—log — |t

lim:¢ > lim — —
e—>0+—e—>0+ 15 ng L)

Hence e > O for all finite values of ¢.

s o [ 8w _ I PVt
—_ ————— = — — | -loge + log(1+ 1—82)-108—_‘:‘_—‘
€
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Similarly, it may be shown that 0° < ;;) < 90° implies 0° < i < 90° for all finite ¢ > 0, and that

90° < iy < 180° implies that 90° < i < 180° for all finite ¢ > O.
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V. SOLUTIONS FOR SPECIAL VALUES OF INITIAL CONDITIONS

Several special cases will now be treated:

A. Special Case |** ;0 =0, sin—i;) £0

From Egs. (1d) and (1e), it is seen that

Equation (1f) then becomes

—_ = — - — TsinQi_Osin w
dt 2 n 4 n
Integrating,
@ d
z:[ % (4)
;0 ?%—E% sin2 x
where
3 3
tf=— -—>0
2 n
15 n2 —
?§=——35in2i0>0
4 n

The integral on the rhs of Eq. (4) is No. 436.7 in Dwight (Ref. 3), and may be expressed in terms of

elementary functions of @ and w -

* —_
The special case e = 1 is not of physical interest.
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B. Special Case Uit i = 0°

From Egs. (1d) and (le):

; = eo
i=ip=0°
Equation (1f) then becomes
2 n2 ;2
dwo 3 "3 —tt 15 "3 0 9 —
— == = =) +— — ; sm" @
dt 2 n 4 n _;02) 2
The solution is
E d
¢ = x (5)
;0 22 + Eg sin’x
where
2
n
/ 22 % a0
2 n
2 -2
o 15 73 €0

SR e X

The integral on the ths of Eq. (5) is No. 436.5 in Dwight (Ref. 3).

! The case-i; = 180° has the same solution as Special Case II, except that i =iy = 180°
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C. Special Case Il ‘—0 = 90° ;0 £ 0

The solution of Eq. (1le) in this case is

i =ig = 90°
Equations (1d) and (1f) then become
e 15 "3 _ _.y _
——=——_—e(1-—62) sin 2 w (6a)
dt 8 n
iz 3 " —o b 5 _
— == —(-¢} (1-————sin w) (6b)
dt 2 n 2
.2 = 2
1. Subcase m, sin” Wy = E

The solution of Eq. (6b) in this case is w = 50. Equation (6a) becomes

— 2
de 15 "3 ) _
n = — — (sin 2w0)dt,
e(1-¢3" 8 =
which integrates to
e
2
1+v1-4% 15 73 -
~log | ———— = — —-_—(sin2w0)t
x _ 8 n
€0

Since 0 < e < 1, the absolute value signs may be dropped to obtain the final result.

1+Jl-e¢ 1+\/1_;02 15
—_— —————— |exp | -

— —_ (sin 2 50) ¢
8

[

=
=|\o.no

10

(7)
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Equation (7) represents an exponential decay of eccentricity toward e =0if 50 is in the second or fourth

quadrant, and an increase of eccentricity toward ¢ = e_ if @) is in the first or third quadrant.

~ 2
2. Subcase lll sin @y £ —

5

For this case, the ths of Eq. (6b) does not vanish initially. Hence, at least initially, Eq. (6a) may
be divided by Eq. (6b) to yield

5 _ sin 2 @
—_— = - e
dw 4 5 -
1~ — sin“w
2
Integrating,
5 _
1 - — sin2 Wy
_ _ 2
2 2
e’ = ¢
5 _
l1- — sin“w
2

Since the main interest isin 0 < e < 1, then !(l - 5/9) sin? 5‘ must remain £ 0. Hence,
]

(1 -5/2 sin? @) will have the same sign as (1 - 5/2 sin? (;0). The absolute value signs may then be

5 —
(1 - = sin? w0>
2

dropped, i.e.,

-2 -2
e’ = e; -
1 - — sin w)
2
or
— 2 1 |- = 5 _
sin“w = — — e2—e02 (1 - — sin2w0) (8)
5 ¢2 2

11
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It should be noted that even though Eq. (8) was derived by assuming that sin? (-"-O #£ 2/5, it is valid in the

limiting case sin? 50 = 2/5, It follows, then, that

sin 2w = 2 sin w cos w

]
)
™
o |
[
|
m|l ®
R
N
)
)
o | o
@
=
£t
=
Sa—

=2
2 €9 5 9 —
1- —{1- — [1~- — sin® a,
5 e? 2

where

+lifsin2w >0
B = _

-lifsin 2w <0
Equation (6a) then becomes
- 2 %
d 15 /2 "3 (1-¢? — - 5 _ 3 _, 2 — 5 .
e _ 2 __:ﬁ__j)~_ e2—e02<1——sin2w0)' _e2+——eo2 1——sin2w0
dt 4 S n e 2 5 5 2

Assuming that sin 2 50 # 0, it is possible at least initially to divide through by the rhs of this equation, to

obtain
4 1 a ede
dt = — —— ~ B
3 n
6 3 — — - 5 — _ 2 5 4 -
\/_ '-(62—1) e2—e02<1———sin2w0) e2+—;62<1-——sm2w0)
2 3 2
Letting
n=e’
dn=+2ede

12
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and

this equation becomes

dt =

Integrating,

2
t —

RN
3 Ve

The only problem that remains in Subcase Iily is to determine the vaiue of O

that

M =1

- 5 —
772 = Bg (1 - — Sin2 wo)
2
2 _ 5 -
Ng =— — eo2 (l- — sin2w0>
3

2 1 ; dn
2
3 \/g "3 (77~771)(77—772)(77-773)
;2
dn
ELLIPTIC INTEGRAL
el V== 1) = 19) (1= ) OF THE FIRST KIND

[} ALY .
. llUlu L“i \vu/, nuv

o /2 - 4 /2
sin — < w <7 - sin —_——— <0
5 5 dt

4 /2 - o /2 dw

7T — Sin — < w <7+ sin —_——__ >0
5 5 dt
dw

_ 2 - _ 2
7 + sin } —<w<27r—sin1\/::7>
5
1 2
27 - sin Z <w <27+ sin_ ——\———>0
5

If sin“ wy # 2/5, then w will tend toward the first or third quadrant in the manner shown in Fig. 1

13

&~
<



JPL TECHNICAL REPORT NO. 32-916

@ TENDS
TOWARD FIRST

\\ QUADRANT

o TENDS\\
TOWARD \\
THIRD

SIN_I\/—Z;
\\
QUADRANT /

12
VAN
TOWARD THIRD
QUADRANT

Fig. 1. Range of variation of apse angle for 90°inclination

Since

15
[

d
- 0% 180°—=— >0
dt
dw
900, 2700 —:—d— < 0
t

g1
i

then once w has entered the first or third quadrant, it will remain there for all subsequent times. A finite

time, ¢;, will be required to enter the first or third quadrant, assuming that sin’ a_JO # 2/5.

Note that from Eq. (8),

_ — — _ 5 _
Sin2w=0f7e2=8125802 (l—— sin2wo> (104a)
2
B P 2 — 5 . 9-— (10b)
sin“w = 1—=—e =ey=- — ey [1- — sin”w

3 2

14
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The value of ¢t; may always be found by a procedure similar to the following:

Assume that 7/2 < (;0 <7 —sin’}! v 2/5. Then w will move toward the value w = 90° The value

which e 2 must have when @ = 90°is given by Eq. (10b). The value of ¢, is given by Eq. (9) (using 8 = -1,

since @ is in the second quadrant for 0 < t < ty):

dn (11)

V=l =1 = m)(n =9

e—2
— 2
2 1 n
3 \/g n3 ;‘02
where
-
my =1
— 5 -
J Mg = e02 (1 ~ = sin? w0>
2
2 - 5 -
TNg =~ — e02 (1- — sin2w0>
- 3 2

Sinece de/dt < 0 for @ in the second quadrant, and de /dt > 0 for @ in the first quadrant, then e reaches its

minimum value at w = 90% j.e., e_.
’ S o min

(3]

Fort > ¢y, @ will remain in the first quadrant, so that de/dt > 0. Hence, e will increase until the

orbit intersects the surface of the central body; i.e., until e

ecr.

The time (7 - ¢,) required for € to increase from ;2 to :z_cr is given by Eq. (9) (using 8 = +1) as

—2
cr

dmn

(12)

n
2
N3

1
s

15

V=(n =m0 =19 (= ny)
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where
c
7)1=1
— 5 - 3 -
P 772=e22 (1—-—— sin2w2> == — e22
2 2
2 5 — —
g =~ — e22 <1-— sin2a)2) =.¢322
L 3 2

The lifetime of the satellite is then equal to T.

It may be concluded that all polar satellites (-i_(; = 90°) are unstable, except for those having

wy =T - sin 1 v 2/5 or (:)-0 =27 - sin”! 2/5. From Eq. (1¢), it is seen that ;;) =90°= 6= constant

- Q.

Several features of the motion for this special case, such as the two integrals of Egs. (8) and {9),
are analogous to the corresponding features in the case of general initial conditions. Hence, a thorough

understanding of the motion for the case iy = 90° is useful in solving the general case where iy # 90°.
g 0 g g 0

16
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V. SOLUTIONS FOR GENERAL VALUES OF INITIAL CONDITIONS

Since the cases ;0 =0, Z) = 0°, ;) = 90°, ;) = 180°, have been solved above, and ;0 = 1 has
been ruled out, in all that follows,it may be assumed that 0 < ;0 <1, 0° < ;;) < 90°. As shown above, it

follows that 0 < e <1, 0°< i < 90°, for all finite ¢ > 0. (The case 0 < —e—o <1, 90°¢ < ‘-O < 180°, may be

treated in an analogous manner.)

Since it is now assumed that sin? l_() # 0, sin 2 ;;) # 0, Eq. (1d) can at least be initially divided by
Eq. (le), provided that sin 2 (‘70 # 0. (In the case sin 2 50 = 0, it is possible to think of Eq. (1d) being

divided by Eq. (1le) at some point where sin 2 (‘_’E) # 0. Then let sin 2 50 - 0.)

The following equation is obtained:

de (1-¢e“) -

_— = tan 1

di e

Integrating,
_ 1
]1—e2 | = constant -

leos 717
cos i

— ) —.2 6 —
Applying the initial conditions, and using the facts that 0 < (1-e“) <1, [cosi | = cosi, the following

integral is obtained:

(1-¢2) cos?i = (1~ ;g) cos? ;)

or

-2
(1-ey) g — FIRST INTEGRAL

sin?i = 1~ ——— cos’ i OF MOTION (13)
(1-¢?)

The physical interpretation of Eq. (13) is as follows: ““That component of angular momentum of the

artificial satellite which is nomal to the ecliptic plane defined by the orbits of the two massive bodies is

PR I L &) NS DUEY J | PR
COnserved. This fHllows the fact that th

r ged ,_r!gular momentum h; of the satellite about the

e tt]
jeoitts

[
1]
<
1]

=3
0

an
ul
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central body is given by
_ _ o}
h = #1/2 a (1—62)/2

and the fact that ¢ is constant.

Equation (13) is one of the three integrals required to solve Eqgs. (1d), (1le), and (1f).
Assuming that sin Zw_o # 0, Eq. (1f) may at least be initially divided by Eq. (1d) to obtain

S 2 _(;2—-sin T)}

1+ — sin“w —
(1-¢?)

sin“ i sin 2w

which is equivalent to

Ple,w)dw + Qle,w)de = 0

where

Ple,w) = sin 2w

- 41 1 5 _ (e2-sin?i)
Qle,w) = = — — — |1+ — sin“w -
5 e sini 2 (1-¢9

One method for solving Eq. (14) is to determine an integrating factor. One such factor is

-2
— [(1 ~eD) - (1-2D cos? T ]
(1-¢?

Multiplying the lhs of Eq. (14) by the integrating factor u will produce an exact differential.

p(Pdw + Qde) = d® =0

18

(14)

(15a)

(15b)

(16)
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Hence
EX) e? — —5 g _
— =uP = - (Q-e9 - (1~eg) cos® iyl sin 2 (17a)
dw (1—82)
_ 2
I 4 .5 _ |- (1-eq) _
—_—=MQ=-———6— (1—e2)+—sin2w|}2—l+————_——cos ig (17b)
de 5 (1-e¢? 2 (1-e?)

Integrating Eq. (17a) wrt w, obtains

-2
- - - _ — 1 - -
e, w) = c — [(1-¢% -Q- e02) cos? io] (— ~ + sin? wo> + fy(e) (18)
(1-22 2
Differentiating Eq. (18) wrt e yields
_ df, (e)
(19)

[A-ed) - (Q-ed) cos®ig) p + ——
de

I ( 1 “> ~-2¢3
=~ — +sin”“w — + —
2 1-¢%) (1-¢?

Equating the rhs of Eq. (19) and (17b),

[(A=e?) —-(1~¢d cos? 7]

dfl(—g) 4 _ ;3
— ==~ — ¢ - — 4 —
de 5 1-¢3 -3
which may be integrated wrt e, to yield
_ 2 1 (1—;02) _
file) = — = — ———— cos® iy + B,
10 2 (1-¢?)

where B, = constant. Since d® =0, then ® = constant = o,

19
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Evaluating Eq. (18) at the initial conditions yields the result

2 _ 5 _ — 1 — _
(DO —B1 = - — eo2 <1 - — sin2 i sin2 w0> - —Q -e02) cos? iy
5 2 2

Equation (18) is therefore equivalent to

_ _ - 5 - _
(1-¢2) e2—e02 (1— ~ sin? i sin2w0>
) — 9 l: 9 SECOND
sin“w = — INTEGRAL (20)
5 e (=% ~ (1~ Q) cos? iy) OF MOTION

Equation (20) represents the second of the three integrals required to solve Egs. (1d), (le), and (1f).

The remaining task is to find e as a function of ¢ (or vice versa). This requires the integration of
Eq. (1d). Equation (20) may be written as

2 e — 5 — —
sin“w = — —— ez—eo2 (l—- — sin2 ig sinZ w0>
5 e2sini 2
Hence,

sin 2w = 2 sin w cos w

Y
2 1 _— = 5 — _
= 28B(— _— e2—e02 <l——sin2iosin2wo>
5 e2sin?i 2

A
2 1 e 5 _ _
1- = {e?2-¢2 (1- Z sin?: sin2w0
e — 0 0
5 e“sin“i 2

where

+1, if sin 2w > 0

(21)
-1,ifsin2w < 0




JPL TECHNICAL REPORT NO. 32-916

Defllllng
2 ] 27 2 (22)
?] = eo - — S8ln LO Sin CL)O

Then

Equation (1d) may then be written as

1
- 2 )
d 3 ng - % S — 5 — — 2 2
ez V6 — i‘i- (62—7’}1)2 —et-e? -1+ = (1—602)cos2i0+ — 771] + — M
dt 4 n e 3 3 3
Defining
S — — 2
4y ==-1+ — (1—e(¥) cos? ig + — N
3 3
(23)
2
dy =~ —m
3
so that
de 3 n3 B - Bo— - %
= ‘/g—_ - (62“771) ("34"4182"42)
dt 4 n e
Defining
1
Ny = — (-A1+\/A2{-4A2>
2
(24)

21
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the previous equation becomes

de 3 "3 _ - - %

_— = — 6—__— E [-(62‘771)(82"7)2)(62_773)}2 (25)

dt 4 n e

At some point where de/dt £ 0, divide through by rhs to obtain

4 1 ede

dt = — —— - B %
3 \/-6' 3 [—(ez—‘ql) (62—772) (62—773)]

Letting
n =2l
dn =+2ede
the previous equation becomes
2 1 n d
i no
S V6 m3 [=(n-m) (n -y (=1~
Integrating, and defining ¢ = 0 when e = ;0, i = ;), w = a_)O,
— e’ THIRD
2 1
=~ — 2 g f 47 y INTEGRAL (26)
2 _
3 Ve m 2 [=(g=m) (n=mp (n-m)" OF MOTION

The rhs of Eq. (26) is in general an elliptic integral of the first kind, and may be evaluated numerically
by use of transformations given in Franklin (Ref. 4).
Equation (26) represents the third and final integral of motion required for the solution of the three

coupled first-order equations.
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Vi. BEHAVIOR OF NODE ANGLE @

Having solved Egs. (1d), (1e), and (1f), it is now possible to solve Eq. (1c) for the behavior of the

node angle Q. This equation may be written as

— 2 _
dQ 3 "3 3 - - —
—_ = - — coill [(1-¢2) + 5¢2sin? @] (27)
dt 4 7 (1-e%”
It was shown above that L—O = 90°:§ = constant = 60
From Eq. (13),
—o
_ 1- 36‘2) : _
cosi = —— cos iq
(1-e3”
since i must lie in the same quadrant as i_o, as shown above. Equation (27) may then be written as
da 3 n% _ 1/2 {6_2 + [1-2771"(1";02) cosz%]}
_—= - T(l—eoz) cos i — — — (28)
dt 4 =n [(l—ez)-(l—eg) cos? ig]
Dividing Eq. (28) by Eq. (25),
79 oy e {e?+ [1-27; - 1 -ed cos?ipl}
— = —B — (1 - eo) cos iO — — —9 - —9 1/2
de 6 {e?+ [-1 +(1—602) cos? ig) } [~(e* =7 (e =my) (e =73)]
Letting
n=e?
dn =+2ede
23
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the previous equation becomes

40 1 .4 _ {77+2[1—771—(1-;02)c052-i_0]}
’—=,B*'(1—602) cos g |1+

dTI 2 6 {77+ [—1+(1-;02) cosz%]}

1

A
[-(n =71 (n =79 (n-73)] *

which may be integrated in the following manner:

f §
%
—02 [~(n =7y (7 =my) (n=n3)] :

—_ — 1
Q=04+ A cos_% (1—;02)/2 (2)
e ,
‘ (n-mgdn
¥ 1
;(;z (n=mg) [~(n=n)) (n=n9 (n-ny] 1
where
my =201+ 7 + (1-¢d cos?iy]
(30)

775 =1 ~ (1—;02) 0082 io

The first integral on the rhs of Eq. (29) is an elliptic integral of the first kind, and hence may be numerically
evaluated by means of tables. The second integral, however, is more complicated and probably would have

to be numerically integrated for each set of values 7,, 75, N3, 74, 75-

By an analogous procedure, Eq. (1b) may be integrated, and then X is expressible in a form similar

to Eq. (29).

24




JPL TECHNICAL REPORT NO. 32-916

Vil.  BEHAVIOR OF PERICENTER ANGLE «

In order to utilize the elliptic integral solution, the value of S must be known. Hence it becomes

necessary to partially determine the behavior of w as a function of ¢.

In particular, note that

2 - _
= 0 iff if and only if) — (1- e?) = (sin?i - eDsin?w
dt 5

which is equivalent to

- - 5 - - — — 5
4 l_(l—e,_‘?) cos? in + en2 (1 - — sin? iy sin? wO\_l +e? l-—2e0 (1 - = sin? Lo sin? wo -I

\ 2 /| L \ Z

/1
= 9y 2T S 27 2 -
+eg 11 =(1=-eg) cos®i 1- — sin“igsin“wy ) =0
2
or
— (Q+dy+mpet—2mels [1-(U-ed cos®iglm, =
5
Defining
3 o 27 T2 ST T B
By = — (1+4;+7m) =(l-eg)cos®iyg+ey {1~ — sin”ijsin® w,
5 2
-2 5 27 .27
By =-27m) =2¢y (1 - — sin®iysin” w, (3D
2
5 27 =3 —2 2T S a7 2~
By = [1-(1-¢g) cos®igl ) = [1-(1~ey) cos®ig) (1 - — sin® iy sin® o
2
Then
dw -
L o 0ifi Byt + Byel+ By = (32)
dt
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The solution of Eq. (32) is

-B, tVB%-4B,B,
= ;B £0 (33)
2B,

A. Case A

For the special case B; =0, (which can occur only if sin? ;) sin? (‘-)0 > 2/5) the solution is

Note that B; = 0 =8, = 2(1 - ;02) cos? l_o £ 0. Hence, one of the two solutions of Eq. (33) or Eq. (34)

will hold in any particular case.

If dw/dt is ever to be =0, then the corresponding value of e? given by Eq. (33) or Eq. (34) must

be real-valued, and such that 0 < e2 < 1. Thisis easily seen to be the case for Eq. (34). Hence, for

Case A,
_ _ 1 _ _
e2=e}E — [1—(1—e02)c052i0]
2

0o
Y o : (35)
dt (1 -;AZ) ;} —;02 (1 - — sin2 ;;) sin2 (;0>

sin“ w = sin” w, = — — — —

5 ej‘ [(1- e:) -Q —e_g) cos? iO]

NECESSARY AND
SUFFICIENT
CONDITION FOR

2
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Equation (33) must now be investigated. In order for e ° to be real-valued in Eq. (33),

(B% ~4B,By) 2 0. It may be shown that

— - 1 - —
(Bg -4B;Bjy) = 2B, (1~ e%) cos? i [1 + — By—(1~ e02) cos? i{l (36)
2
There are four possibilities that would make e 2 real-valued:
gBl = (1—;02) cosz;l_o £0
— - 2
(a) B2=0: sinziosin2w0=;—___7—\" By=0
Bs = 0
This implies that e? = 0.
dw
—Z =0
dt

Eq. (20), it is seen that this limiting value must be such that sin? 50 =2/ 1/[1-0- ;02) cos? -1«_0 ]. In

order that sin? (:)-a < 1, it must be that (1 - ;02) cos? L—o < 3/5, but this is certainly satisfied, since sin? i

But it takes an infinite time for € to reach 0. Hence, w will approach a limiting value asymptotically. From
> 2/5. In order for ¢ » 0, de/dt <0, so that the limiting value of w must lie in the second or fourth

1 . -1 2
quadrant. Hence, this limiting value must be either 7 —~ sin \/sin w, or 277 - sin \/sm W, .

1 —_ —
(b) 1+ — By -(1—e02)c0s2i0 =0
2
in <0
|

— 4in23

—_— 0=0

But this is Special Case II above, and may therefore be excluded here.

1 - _
(c) B2<0,[1+——B2-(1—e02)cos2ioj|<0
2

5 - -
(l - —2— sin? iy sin2 wo) >0

P i 22 gin? r-:--| sin?
2

1 _
1—60/ T

S
f ~~
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The second of these inequalities is never satisfied. Hence (c) cannot occur.

1 _ -
(d) B, >0, [l + — By —(1—602) cos? iO:] >0
2

5 — _
(1 - ; 's.in2 ':0 sin? w0> <0

_ 5 _ _ —
[(1—e02) + — eozsin2 wo] sin? ip >0
2

The second of these inequalities is always satisfied (except in Special Case II); the first is satisfied iff
sin? l_o sin? a-)o > 2/5. It may therefore be concluded that for the case of general initial conditions discussed

in Section V, dw /dt is not = 0 for any finite ¢ > 0, provided that sin? LB sin? (;0 < 2/5,

It must now be determined whether or not those values of ¢ 2 for which dw/dt = 0 are such that
0<e?2% 1. Only those cases where sin? :0 sin? 50 > 2/5 need be considered. Also, since the case

By = 0 was treated in Eq. (35), it is necessary only to consider the cases B; > 0 and By < 0.

B. Case B: B1 >0

This will occur whenever

— — — 5 — —
(1 —ed cosiy > ~ el (1 - — sin®ij sin? wo> >0 37
2

The second half of this inequality follows from the fact that only those cases where sin? iy sin? a—)o > 2/5
are being considered. Since e 2 must be > 0, it is seen from Eq. (33) that the ‘“‘+’’ sign must be chosen

(since B, > 0). Also, it must be true that

/p2

or B{B3 < 0, which is satisfied.
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Also, e 2 < 1iff

-B, + VBLI-4B,B;3 < 2B,
VB2~-4B{By < 2B + By = 2(1~ed) cos? i,
—e. 2 _
(B2-4B,By) <4(1-ed costiy=4B% + 4B B, + B]

e W Iy —2 5 2+ .2-
(1-e*) cosi, | 1~e 1~ — sin“i, sin“ w >0
0 0 0 9 0 0

since sin? in sin® @n > 2/5. Hence,

~B, + B3~ 4BB,

-2 _ T2 <1
28,

Rut thic lact inamualitv is rertainlv satisfied.
1 h ’

(=]
A
o
[
[
-]
i

Whenever Eq. (37) is satisfied, Case B will occur, and dw/dt

c. Case C: B, <0

This will occur whenever

- — - 5 — -
0 <(1- e02) 0052 io < —eg (1 - — sin2 ig sin2 wo)
2

_ -2 =2
= 0O whene® = ep-

(38)

(39)

(It should be kept in mind that only sin? :;) sin® w, > 2/5 is being considered, so that B,>0.) The requirement

that 2 > 0 in turn, requires that (=By + v Bg - 4B, Bg) £ 0. Therefore, there are two subcases of Case(C:

(a) 0 <By <y Bg ~ 4B, By, with the *‘~”’ sign chosen

or

>~
o]

N
(=]
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This is not satisfied, since By < 0, so that (a) cannot occur,

/n2

or
BBy 2 0

This condition is satisfied (in fact, BB is always > 0 for Case C); either the ““+”’ or ‘‘~’’ sign may

be taken in Eq. (33), both signs yielding ¢ 2 > 0. However,

e? <1iff <-32 + \/33-43133> > 2B,

(The inequality has changed because B, < 0).
+ VBL-4B By > 2B, + By = 2(1~el) cos? iy > 0
The *“~’’ sign must therefore be discarded. Therefore,

e2 < 1iff + VBZ—4B By > 2B) + By = 2(1~¢f) cos® iy > 0
2 2 2

~By < By + By

(The inequality has changed because By < 0.)
-9 97T -2, S 9= 92—
(1—e0) cos“ip |1-ey |1 - — sin” iy sin® w >0
2

This last inequality is certainly satisfied. Hence,

~B, + VB3 ~4B,B,

2B,

<1 (40)
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Whenever Eq. (39) is satisfied, Case C will occur and dw/dt = 0 when e?= —e-cz-

From Egs. (38) and (40), it may be concluded that the value of ¢ 2 which must occur whenever

dw/dt = 0 is always given by 1/2B, (=By + B% -4B, B,), provided that B, # 0. Therefore,

Yy - 1
el=el= —— [-32 + \/33-43133]
284

dw
—— = 0 for a finite t > 0 iff
dt 2 —2 (22

; (l—eB) (33-771)

sin w=sin2wB_=. — — — —
eg [(1—eB2) - (1—e02) cos? io]

— _ 2
B £0 sin? ig sin? wy > ; (41)

Note that Eq. (41) yields four values of JB’ such that da_)/dtl_ — = 0. Hence, if sin? io sin? wy
w=w
> 2/5, then there are exactly four values of c at which (d@/df) = O (unless sin? wg = 1. It has not yet

been determined whether any of the values JR are actually attained.

For the special case where sin? wp = 1, it is seen from Eg. (1d} that de/dt i;=;B = 0. Hence,
w will be constant with time because of Eq. (20).
From Eq. (20),
_ _ _ _ 5 _ _ NECESSARY AND
sinfw=0iffe? =¢el =¢l (1 - = sin?i; sin® w0> - m SUFFICIENT (42)
CONDITION FOR
sin?w = 0

If sin? L-O sin? a—)o < 2/5,then 0 < ;32 < ;02 If sin? ;Z) sin? 50 > 2/5, then w cannot achieve either of

the values 0° or 180°, as this would imply e? = -8—32 < 0.
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Also from Eq. (20),

- — = 5 - — 2 _ 5 — —
sinfw=1iffet+e?|-1 + — (1—302) coszio + — eO2 <1— — sin2iosin2w0>

2 _ 5 — _
- g 602 (1 - ; sin? iy sin2w0> =0

Using the previous definitions of 4| and 4,, this becomes
sin?w=1liffet+4,e2+ 4, =0,

the solution of which is

= € NECESSARY AND
SUFFICIENT (43)
CONDITION FOR

sin2w =1

® |
[ ]
|
[ 3]
il
| -
|
RN
—
I+
S
— D
I
S
S
[\V]
S’

[
3

%)
=]
a1
3

[

Since de/dt = 0 when w = 0°, 90°, 180°, 270° and nowhere else, then gg and ;4? will be extremal

values of ¢ 2, provided that d%e /di? |sin 2 2 =0 # 0. But,

0 0
d% de di
=( ). — 1+ ). —_—
di? _ dt _ dt _
sin 2 w=0 sin 2 w=0 sin 2 w=0
15 3 _ o - - - dw
+ — — e(l1-¢e?) sin? § (cos? @ - sin? @) - ——
4 n dt —
sin 2 w=0
Since
— dw 3 ”g A
sin“w=0——= . __ (1-e2) > 0,
dt 2 n
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then d% /di? sin2 w=0 > 0, so that e will always reach a relative minimum equal to ;3 whenever w has

the value 0°or 180°.

Also,
dw 9 n% 1 2 5
— (/)] —_ _ — —_
sinfw=lm0— = = — —————|ed+ = ¢ (1~ = sin?i; sin? w
-7 - — —ou 4
dt 4 n € (1—64) 3
9 ”§ 1 -2 5 - -7
= — — — —(l—e;) + — (1—802) cos? i (44)
- 3/2 3 J

From Eq. (44), note that if sin2 70 sin?® (‘_’0 < 2/5,then dw/dt |sin2@=1"> 0 regardless of the value of
;42. Hence, dZe/dt? 2 7 =1 <0, so that for this case, e will achieve a relative maximum of ;4 when-

ever @ = 90°or 270°.  This does not mean that @ will actually attain the values 90° and 270°

lsin

Assume now that the value of e 2 (if any) which makes dw/dt = 0 has been found. The correspond-
ing value of sin? @ may be computed from Eq. (35) or Eq. (41). The polar plot of @ may then be subdivided

into four sectors, within any one of which dw/dt has a constant sign.

Since

i

1-¢3" >0,

3
sin“w=0—=—— = —
2

n

then dw/dt > 0 in the sectors centered around w =0° and 180°

The sign of dw/dt in the sectors centered about @ = 90° and @ = 270° will be the same as that of

- —_. 2
dw/dt | sin2 & = 1+ Since 1- ef) < 1, it is seen from Eq. (44) that

_ ~ 3 dw
(1—e02) cos2i0> —_——— >0
5

dt 9

sin® @ =1

33




JPL TECHNICAL REPORT NO. 32.916

From Eq. (43) it is seen that

(1-¢d

1 _ 2
— @edyF Vai-44)

2 1
) = — (43 + 200+ 4, -4 F (2+4)V A} -44,]

2

(1-¢f

From Eq. (44) it is then seen that

dw 1 5 . - -
- <0 iff ;[Ail’ + 20+ 4, -4 F (2+4) VAi-44, [> S (1-ed cos®iy (45a)
t
2

sin® w =1

-

dew 1 [ —— | s . - -

—— S 0iff = | A2+ 2(1a A ~A)F 244 VA2 -2d, | = 2 (1= cos? T (45b)
dt 9 — 2 L - 3

sin” w =1

da 1 [ 1 5 .. - -

S > 0iff — | A2+ 20+ 4, =49 F @+4) VAE 44, < = (1-¢d) cos? iy (450)
dt 2 L . 3

2

sin” w =1

Assume now that the sign of dw/dt is known in each of the four sectors.

A polar plot is shown in Fig. 2.

-

\\Fd;u—HAS //

Fig. 2. Range of variation of apse angle, general case
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Consider one of the four dotted lines which form the boundaries of the sectors. One of the following three

cases must hold:

— >0

__g__

|
I
Case I: — <0 =
[
|

This requires dw/dt lsin2 =1 < 0, so that inequality Eq. (45a) must hold true. In this case, the
line will be a point of stability for @; @ will tend to approach this value and remain there. A finite time
interval will probably be required for this approach; also, after some time interval, @ will remain in the same

quadrant as the dividing line. Since /3 will then be known, a complete time history of the motion can be

given.
Note that Lase 1 can occur only in the first aud iiicd yuadianis. Heacs, d2/dr > 0 atall anch
points.
— It —
dw 1 dw
Case II: — >0 (—Il—)——<0
dt ! dt
il
This again requires dw/di isin2 > =1 <0 sothat Eq. {45a) must hold true. Tn this case, the

dividing iine will be a point of instability for w; w will tend to move away from this point.
y ’ ’ *

Note that such unstable points can occur only in the second or fourth quadrants; hence, de/dt <0

at all such points.

From Cases I and II, it can be concluded that dw/dt lsin2 5=1<0 implies that all orbits are

unstable, except possibly for the two cases

a_J;) = 77 - sin 1 /sin? a_)B, “’_0 = 277 — sin "} /sin? ‘:B
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H

Case III: — >0 <—H<— — >0
1
I

This requires dw/dt |sin2 5 =1 0, so that Eq. (45¢) must be satisfied. Dividing lines of this
type, if they occur at all, must occur simultaneously in all four quadrants (except for the special case

sin2 —B = 1).
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VilIl.  PERIODIC MOTION

In those cases where periodic motion of the averaged variables occurs, the period may be expressed
in terms of complete elliptic integrals of the first kind.(By “‘periodic motion””, it is meant here that w
advances from its initial value (‘—’0 successively through the four quadrants, re-attaining the value “—)0 after a
time interval P. The motion then repeats itself) Also, it is possible to invert Eq. (26) and write e as a

function of ¢.

The equation for d w/dt involves @ only as sin? w. It may be shown that d w/dt is symmetrical
about the values w = 0°, 90°, 180°, 270°. Hence, the period of motion of w is four times the length of time
required for w to go from 0°to 90°. Since w = 0°==¢? = ;32, and @ = 90°=>¢? = ;42, then the period P

of the motion of w is given by Eq. (26) as (using 8 = +1)

__8 n (46)
36

P
—9 [-(77—771) (77"'7]2) (7]"773)] 2

S
wm‘:’l

2

Since e 2 and sin? i depend only on sin? @, and ; remains in the same uadrant, for this case, both
P y ’ q

e and i have periods equal to P/2.
Before expressing F in terms of the elliptic integral FF (%, ®), it is necessary to inv

parameters 7);, 7)9, 3. From Eq. (24), it is easily seen that 175 2> 75 in all cases. Also,

Since

sin? ;) sin® ajo <—=m; >0
— — 3
1- e02) cos? i > ——= =7, > N3

A1>0
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and since ;n?in =17, and ;K:‘:ax = 7)g for periodic motion, it may be concluded that

(a) w has period:P; e and i have period P/2.

w periodic in time
and — ) (b) 2 achieves a maximum value 7o and a minimum value 7)y. (47)

_ — 3
2 2
(1-eq) cos®iy > — () my < my £ m £ 7y within the range of integration.

The elliptic integral in Eq. (26) is then Case V on pp. 288 of Franklin (Ref. 4). Hence,

&2
d
f i y = C; [F (b, ® - F (k;, ®)]5  j=0,3,4
- [=-m) (n=my (n-nyl*
)

where Cl" kl" ® are given by the following relations:

=Ty, _2‘“’72. -
sin? @ = . ! ; 0L 0L — (48a)
T, = M. .~ My, 2
i ]
C; = 0 (48b)
k] = (4‘8C)
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)
1 2
My, = — (=4~ VA] ~44, (49)
i 2 i I j
A4, = -1 (1-22) cos? T 4 =
1. = -1+ — =€) cos 1,’.+—771.
i 3 i
2
dg = = — m
3 J

Cy [F (k3,0°) = F(ky,90°)] (50)

where C3 and k4 are given by Egs. {48b) and (48¢).

In order to write a time-history of the motion, Eq. (26) must be used, so that the value of 5 must be
known. Since 3 depends only on the quadrant of w, its initial value is known from a—JO. Since dw/dt > 0
for periodic solutions, w will initially move toward that particular one of the values w = 0° 90°, 180°, 270°,
which is next above a_)o. When w crosses a quadrant boundary for the first time, the value of 3 will change
from +1 to -1 (or vice versa), and then remain constant for a time interval of P/4. Then B will change back
from ~1 to +1 (or vice versa) and remain constant for the succeeding time interval P/4. Continuing in this

manner, it is possible to write 8 as an explicit function of ¢, for ¢ > 0.

For sake of clarity, assume that 0° < “-’0 < 90° (For a_)o in any other quadrant, the results are

similar.) Then B(t) = +1for0 < ¢ < ¢;.
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~2

- €4
2 n J dn
t;p= —— — -
3V6 nf Joy [=(-m) (n-my (n-np)”
0
2 n
=~ — Cy [F (k0% = F (kg, @p)] (51)
3\/? n%
where C, kg, @, are given by Eqgs. (48). The time-history of 3 is then given by
+10 <t <
-l <¢ <t1+P/4
+1; 60+ P/4 <t <ty + P/2
B ) -L ¢, + P/2 <t < +3P/4
The value of ¢ as a function of ;may then be expressed in the following form:
2 0
—— — Cqo [F kg, ® ~ F kg, ®p)]; 0 <t <ty
3V6 ng
2
tp - ——= — C, [Flhy, @~ F(ky, ®)); ¢ty <t <ty+P/4
3V6 n%
t = (53)
0 -
b + Pl + Ly [F (kgy® = F by, ®9)); ¢y + P/4 <t <ty + P/2
3v6 ng
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The solution in Eq. (53) is of the general form

t-T=DI[F (kl.,d)) -F (k].,@j)]

or

(t-1T)

Fk;,® =
D

+ F (kl_,<I>I.) (54)

where T and D are constants. The general relationship between elliptic integrals of the first kind F (k, ®),

and the Jacobian elliptic function sn F (k, ) is as follows:

sin @

)
d
Fk® = / _____‘17__ = / x
o V 1-k%sin2y 0 V(=22 (1-k2 2%)

(55)
sin ® = sn F (k, D)
Using Eq. (54)
t-T
sin2 d = 3"2 |- + F(k;,q);).l
LoD ©
Equation (48a) then becomes
-2 2 -7 56
e® =My +(n ~my)sn + F (k@) (56)
i i D

Using the various values of D and T from Eq. (53), itis seen that
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+(ny =my) sn?
7720 7710 7720 sn
+(n7 =7y ) sn?
M2y * 301, = Mg} on

;2(t)=< ( ) on?
7723 + 7713-7723 sn

B 2
36 ™3 1
_— = — t+F(k0,(I>O) 3 0<e<ity
2 n CO
B 3V6 "g 1
= — — (=) + Flhy, @) |; ¢y <t <t +P/4
2 n C4
-~
3y6 3 1
Ve — — (t—t;=P/4) + Flkg, ®g) |; ty +P/4<t <ty +P/2
2 n C3

(57)

Equation (57) is an explicit formula for ¢ 2 as a function of ¢ Using this relation for € 2, it is

2T

possible to express both sin® i and sin? w as explicit functions of time.

For those cases where the behavior of the averaged variables is not periodic, it is still possible to

write e 2(¢) in a form similar to Eq. (57).
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IX. CONCLUSIONS

Although there are still a few details of the motion of @ which remain to be investigated, the above
discussion gives a reasonably good picture of the types of long-term behavior which can occur for close
orbits in the restricted 3-body problem®!, within the sense of ode (1a) —(1f). An understanding of the long-
term behavior of such systems might in turn be useful in obtaining non-averaged solutions of the restricted

3-body problem.

Also, the results should be useful in choosing initial conditions for numerical studies of orbital

lifetimes.

™ This problem has been treated in an article by the Russian, M. L. Lidov (Ref 5). Many of the results
obtained above are also given by Lidov, although he uses @ instead of e as the variable of integration in the third

integral of motion.
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NOMENCLATURE

averaged value of semimajor axis of the osculating ellipse
averaged eccentricity
initial values of the averaged orbital elements

averaged inclination

w/(a)?3/?

1

, in which subscript 3 refers to the third (or perturbing) body.
()32 (1= €3/
43 ~ 3

Thus, for the case of an artificial satellite of the Moon, in which the Earth is
considered the perturbing body, n4 is approximately the mean motion of the Earth

about the Moon.

time

gravity constant for central body

averaged value of (—~n) (time of pericenter passage)
averaged pericenter angle

averaged node angle
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